

Preparing applications for the Cray XE

© Cray Inc 2013

Compiler Driver Wrappers (1)

2

● All applications that will run in parallel on the Cray XC
should be compiled with the standard language wrappers.

The compiler drivers for each language are:
● cc – wrapper around the C compiler
● CC – wrapper around the C++ compiler
● ftn – wrapper around the Fortran compiler

● These scripts will choose the required compiler version,
target architecture options, scientific libraries and their
include files automatically from the module environment.

● Use them exactly like you would the original compiler, e.g.
To compile prog1.f90 run
 ftn -c prog1.f90

Compiler Driver Wrappers (2)

3

● The scripts choose which compiler to use from the PrgEnv
module loaded

● Use module swap to change PrgEnv, e.g.

● module swap PrgEnv-cray PrgEnv-intel

● PrgEnv-cray is loaded by default at login. This may differ
on other Cray systems
● use module list to check what is currently loaded

● The Cray MPI module is loaded by default (cray-mpich2).
● To support SHMEM load the cray-shmem module.

PrgEnv Description Real Compilers

PrgEnv-cray Cray Compilation Environment crayftn, craycc, crayCC

PrgEnv-intel Intel Composer Suite ifort, icc, icpc

PrgEnv-gnu GNU Compiler Collection gfortran, gcc, g++

PrgEnv-pgi Portland Group Compilers pgf90, pgcc, pgCC

Compiler Versions

Sli
de
4

● There are usually multiple versions of each compiler
available to users.
● The most recent version is usually the default and will be loaded when

swapping PrgEnvs.

● To change the version of the compiler in use, swap the Compiler
Module. e.g. module swap cce cce/8.1.6

PrgEnv Compiler Module

PrgEnv-cray cce

PrgEnv-intel intel

PrgEnv-gnu gcc

PrgEnv-pgi pgi

EXCEPTION: Cross Compiling Environment

5

● The wrapper scripts, ftn, cc and CC, will create a highly
optimised executable tuned for the Cray XE’s compute
nodes.

● This executable may not run on the login nodes
1. Login nodes do not support running distributed memory applications

2. Some Cray architectures may have different processors in the login
and compute nodes. E.g. cross-compilation.

● If you are compiling for the login node you should use the
original direct compiler commands
● e.g. ifort, ipcp, crayftn, gcc, g++ or gfortran.

● The PATH variable will change with the modules.

About the –I, –L and –l flags

6

● For libraries and include files being triggered by module
files, you should NOT add anything to your Makefile
● No additional MPI flags are needed (included by wrappers)

● You do not need to add any -I, -l or –L flags for the Cray provided
libraries

● If your Makefile needs an input for –L to work correctly, try

using ‘.’

● If you really, really need a specific path, try checking
‘module show X’ for some environment variables

OpenMP

7

● OpenMP is support by all of the PrgEnvs.
● CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by

default. If you have OpenMP directives in your application but do not
wish to use them, disable OpenMP recognition with –hnoomp.

PrgEnv Enable OpenMP Disable OpenMP

PrgEnv-cray -homp -hnoomp

PrgEnv-intel -openmp

PrgEnv-gnu -fopenmp

PrgEnv-pgi -mp

Compiler man Pages

8

● For more information on individual compilers

● To verify that you are using the correct version of a compiler,
use:
● -V option on a cc, CC, or ftn command with PGI, Intel and Cray

● --version option on a cc, CC, or ftn command with GNU

PrgEnv C C++ Fortran

PrgEnv-cray man craycc man crayCC man crayftn

PrgEnv-intel man icc man icpc man ifort

PrgEnv-gnu man gcc man g++ man gfortran

PrgEnv-pgi man pgcc man pgCC man pgf90

Wrappers man cc man CC man ftn

Running applications on the Cray XE

How applications run on a Cray XE

10

● Most Cray XEs are batch systems.
● Users submit batch job scripts to a scheduler from a login node (e.g.

PBS, MOAB, SLURM) for execution at some point in the future.
Each job requires resources and a predicts how long it will run.

● The scheduler (running on an external server) chooses which jobs to
run and allocates appropriate resources

● The batch system will then execute the user’s job script on an a
different login or batch “MOM” node.

● The scheduler monitors the job and kills any that overrun their runtime
prediction.

● User job scripts typically contain two types of statements.
1. Serial commands that are executed by the MOM node, e.g.

● quick setup and post processing commands

● e.g. (rm, cd, mkdir etc)

2. Parallel executables that run on compute nodes.
1. Launched using the aprun command.

The Two types of Cray XE Nodes

11

Compute nodes

● These are the nodes on which

production jobs are executed

● It runs Compute Node Linux, a
version of the OS optimised for
running batch workloads

● They can only be accessed by
submitting jobs through a batch
management system (e.g. PBS Pro,
Moab, SLURM)

● They are exclusive resources that
may only be used by a single user.

● There are many more compute nodes
in any Cray XE6 than login or service
nodes.

● They are always directly connected to
the Cray Aries.

Login or service nodes

● This is the node you access when

you first log in to the system.
● It runs a full version of the CLE

operating system (all libraries and
tools available)

● They are used for editing files,
compiling code, submitting jobs to the
batch queue and other interactive
tasks.

● They are shared resources that may
be used concurrently by multiple
users.

● There may be many login nodes in
any Cray XE6 and can be used for
various system services (IO routers,
daemon servers).

● They can be either connected to the
Cray Gemini network (internal login
nodes) or proxies (external or esLogin
nodes).

Primary File Systems on HECToR

● Home space ($HOME, NFS)
● Not visible to compute nodes
● Has quotas and is backed up

● Work Space (1200TB, Lustre, /esfs{1,2})
● Parallel filesystem optimized for large files, high bandwidth
● Use for scientific output, restart files etc.
● Visible to login nodes and compute nodes
● Not backed up

● There is no local storage on compute nodes

Lifecycle of a batch script

13

esLogin

sbatch run.sh

PBS

Queue

Manager

PBS

MOM

Node

Cray XE Compute Nodes

#!/bin/bash

#PBS –l mppwidth=64

#PBS –l mppnppn=4

cd $WORKDIR
aprun –n 64 –N 4 simulation.exe
rm –r $WORKDIR/tmp

Example Batch Job Script – run.sh

Parallel

Serial

Scheduler

Resources

Running an application on the Cray XE
 ALPS + aprun

14

● ALPS : Application Level Placement Scheduler
● aprun is the ALPS application launcher

● It must be used to run application on the XE compute nodes:
interactively or in a batch job

● If aprun is not used, the application is launched on the MOM node
(and will most likely fail).

● aprun launches groups of Processing Elements (PEs) on the
compute nodes
(PE == MPI RANK == Coarray Image == UPC Thread)

● aprun man page contains several useful examples

● The 3 most important parameters to set are:

Description Option

Total Number of PEs used by the application -n

Number of PEs per compute node -N

Number of threads per PE
(More precise, the “stride” between 2 PEs on a node)

-d

Running applications on the Cray XE6:
Some basic examples

15

● Assuming an XC30 with Sandybridge nodes (32 cores per
node with Hyperthreading)

● Pure MPI application, using all the available cores in a node
 $ aprun –n 32 –N 32 ./a.out

● Pure MPI application, using only 1 rank per node
● 32 MPI tasks, 32 nodes with 32*32 core allocated

● Can be done to increase the available memory for the MPI tasks

 $ aprun –N 1 –n 32 –d 32 ./a.out

● Hybrid MPI/OpenMP application, 4 MPI ranks (PE) per node
● 32 MPI tasks, 8 OpenMP threads each

● need to set OMP_NUM_THREADS
 $ export OMP_NUM_THREADS=8
 $ aprun –n 32 –N 4 –d $OMP_NUM_THREADS ./a.out

15

Scheduling a batch application with PBS

16

● The number of required nodes can be specified in the job header

● The job is submitted by the qsub command

● At the end of the exection, output
and error files are returned to
submission directory

● You can check the status of jobs
with:
qstat ?<jobid>?

● You can delete a job with
qdel <jobid>

Hybrid MPI + OpenMP

#!/bin/bash

#PBS –N hybrid

#PBS –l mppwidth=64

#PBS –l mppnppn=8

#PBS –l mppdepth=4

#PBS –l walltime=00:20:00

export OMP_NUM_THREADS=4

aprun –n64 –d4 –N8 a.out

Other PBS options

17

● #PBS –l mppwidth=1024
Number of PEs to use in the job

● #PBS –l mppnppn=8
Number of PEs to use per node

● #PBS –l mppdepth=4

Number of threads per PE

● #PBS –o std.out
#PBS --error=std.err
File names of stdout and stderr

● #PBS –j oe
Join stdout and stderr into a single output stream (stdout name)

● #PBS –A d26
HECToR’s account code for the project (d26 is training).

PBS and aprun

18

PBS aprun Descropt

-l mppwidth=$PE -n $PE Number of PE to start

-l mppdepth=$threads -d $threads # threads/PE

-l mppnppn=$N -N $N # (PEs per node)

•Shortcut: aprun’s –B option will automatically use the appropriate PBS

settings for –n,-N,-d and –m, e.g.

 aprun –B ./a.out

Watching a launched job on the Cray XE

19

● xtnodestat
● Shows how XE nodes are allocated and corresponding aprun

commands

● apstat
● Shows aprun processes status

● apstat overview

● apstat –a[apid] info about all the applications or a specific one

● apstat –n info about the status of the nodes

● Batch qstat command

● shows batch jobs

